Math Instructor

Similarity of Triangles CBSE NCERT Solutions Chapter 6 Triangles Exercise 6.3 Question 2

CBSE NCERT Solutions Chapter 6 Triangles Exercise 6.3 Question 2


2.   In fig 6.35, \triangle ODC ~ \triangle OBA, \angle BOC = 125^\circ and \angle CDO = 70^\circ. Find \angle DOC, \angle DCO and \angle OAB.

Similarity of Triangles Sample Problem
Fig 6.35





Given: \triangle ODC ~ \triangle OBA, \angle BOC = 125^\circ and \angle CDO = 70^\circ


\angle BOC\angle DOC = 180^\circ    {Linear Pair}

\Rightarrow \angle DOC = 180 - 125 = 55^\circ


In \triangle ODC


\angle ODC\angle DCO\angle COD = 180^\circ   {Sum of angles of Triangle}


\Rightarrow 70 + 55 + \angle DCO = 180


\Rightarrow \angle DCO = 180 - 70 - 55 = 55^\circ



It is given that \triangle ODC ~ \triangle OBA.


Therefore, corresponding angles of \triangle ODC and \triangle OBA are equal.


By, AAA similarity criterion, \angle OCD = \angle OAB


Therefore, \angle OAB = 55^\circ

Posted in : NCERT Solutions, Triangles

Tags :
No Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>